7.1 Atoms Electron Cloud Nucleus Atom -10⁻¹⁰ meter- #### Atomic Terminology - Atomic Number = # of protons in nucleus - Atomic Mass Number = # of protons + neutrons | hydrogen
1
H | E 1570 | | 107 | 8 | 890 | | 87 | ů | | 65 | 155 | 17 | | 355 | 355 | | 15 | holun
2
He | |-----------------------------|--------------------------|--------|------------------------|---------------------------|--------------------|----------------------------|---------------------------|---------------------------|------------------------|---------------------------|------------------------|------------------------|------------------------|---------------------------|-------------------------|--------------------------|-------------------------|-------------------------| | 1.0079
Ithium
3
Li | beryllun
4
Be | | | | | | | | | | | | boron
5
B | carton
6
C | nitropen
7 | Oxygen
8 | fuorine
9
F | 10000
10
Ne | | 6,941
sodium | 9.0122
magnesium | | | | | | | | | | | 8 | 10.811
aluminium | 12.011
silicon | 14.007
phosphorus | 15,999
sulfur | 18,998
chlorine | 20.190
argon | | Na | Mg | | | | | | | | | | | | AI | Si | P | S | ČI | År | | 22 990
potassium
19 | 24.305
calcium
20 | 1 | scandium
21 | ttanium
22 | vanadum
23 | chromium
24 | manganese
25 | 26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | 26.982
gallum
31 | 29.096
germanium
32 | 30.974
arsenic
33 | 32.065
selentum
34 | 35.453
tromine
35 | 39.948
krypton
36 | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | rubidium
37 | 40.078
strontum
38 | | 44.966
yttrum
39 | 47.867
zirconium
40 | niobium
41 | 51,996
molybdenum
42 | 54 938
technetum
43 | 55.845
ruthenium
44 | 58.933
modlum
45 | 58.693
paliadium
46 | 63.546
silver
47 | 65.39
cadmium
48 | 69,723
Indium
49 | 72.61
tin
50 | 74.922
antmory
51 | 78.96
telurum
52 | 79.904
lodine
53 | 83.80
xenon
54 | | Rb | Sr | | Ϋ́ | Žr | Nb | Mo | Tc | Ru | Rh | Pd | Āg | Cd | l'n | Sn | Sb | Te | ĩ | Хe | | 85.468
caesium | 87.62
barium | | 88.906
Metturn | 91.224
hafnium | 92.906
tantalum | 95.94
tungsten | [98]
thenium | 101.07
osmium | 102.91
Indium | 106.42
platinum | 107.87
gold | 112.41
mercury | 114.82
hallun | 118.71
lead | 121.76
bismuth | 127.60
polonium | 126.90
astatine | 131.29
radon | | 55 | 56 | 57-70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | lr | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91
francium | 137.33
radium | 8 | 174.97
lawrendum | 178,49
rutherfordium | 180.95
dubnium | 183.84
seaborgium | 186.21
bohrum | 190.23
hassium | 192.22
moitherium | 195.08
ununnilum | 196.97
Unununium | 200.50
ununblum | 204.38 | 207.2
unenquadrum | 208.98 | 1500 | (210) | [222] | | 87 | 88 | 89-102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 114 | | | | | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Uun | Uuu | Uub | | Uuq | | | | | | [223] | [226] | | [262] | [261] | [262] | peq | [264] | peg | D66 | 9719 | 12721 | 12771 | l , | 5289 | | | | | *Lanthanide series * * Actinide series | | lantharum
57 | certum
58 | 59 | neodymium
60 | promethum
61 | samartum
62 | europtum
63 | gadolinium
64 | 65 | dysprosium
66 | holmlum
67 | erteum
68 | fulum
69 | ytterburn
70 | |----|-----------------|--------------|--------------|-----------------|-----------------|----------------|----------------|------------------|-----------|------------------|---------------|--------------|-------------|-----------------| | | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dv | Но | Er | Tm | Yb | | 1 | 138.91 | 140.12 | 140.91 | 144.24 | D145I | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | 1 | actnium | thorium | protectinium | uranium | neptunium | plutonium | americium | ounum | berkeitum | californium | einsteinium | fermium | mendelevium | nobelium | | -1 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | 1 | Ac | Th | Da | 11 | Np | D | ۸m | Cm | Bk | Cf | Es | Fm | Md | No | | -1 | AC | | Га | U | MP | гu | AIII | CIII | DN | 0. | La | ГШ | IVIU | NO | | ι | [227] | 232.04 | 231.04 | 238.03 | [23.7] | [244] | [243] | [247] | [247] | g51g | [252] | [257] | [254g | [259] | #### Atomic Terminology - Atomic Number = # of protons in nucleus - Atomic Mass Number = # of protons + neutrons Molecules: consist of two or more atoms (H₂O, CO₂) #### Atomic Terminology Isotope: same # of protons but different # of neutrons. (⁴He, ³He) #### Isotopes of Carbon carbon-12 (6 protons + 6 neutrons) carbon-13 (6 protons + 7 neutrons) carbon-14 14C (6 protons + 8 neutrons) #### How is energy stored in atoms? **Excited States** **Ground State** Electrons in atoms are restricted to particular energy levels ### Energy Level Transitions The only allowed changes in energy are those corresponding to a transition between energy levels #### Three Types of Spectra #### Continuous Spectrum The spectrum of a common (incandescent) light bulb spans all visible wavelengths, without interruption #### Thermal Radiation - Nearly all large or dense objects emit thermal radiation, including stars, planets, you... - An object's thermal radiation spectrum depends on only one property: its temperature #### Properties of Thermal Radiation Hotter objects emit more light at all frequencies per unit area. 2. Hotter objects emit photons with a higher average energy. #### Three Types of Spectra # Thought Question Which is hotter? - a) A blue star. - b) A red star. - c) A planet that emits only infrared light. ### **Emission Line Spectrum** A thin or low-density cloud of gas emits light only at specific wavelengths that depend on its composition and temperature, producing a spectrum with bright emission lines #### Three Types of Spectra # How does light tell us what things are made of? - Each type of atom has a unique set of energy levels - Each transition corresponds to a unique photon energy, frequency, and wavelength Energy levels of Hydrogen Downward transitions produce a unique pattern of emission lines Observing the fingerprints in a spectrum tells us which kinds of atoms are present Each type of atom has a unique spectral fingerprint #### Absorption Line Spectrum A cloud of gas between us and a light bulb can absorb light of specific wavelengths, leaving dark absorption lines in the spectrum Because those atoms can absorb photons with those same energies, upward transitions produce a pattern of absorption lines at the same wavelengths ## Example: Solar Spectrum #### Energy Levels of Molecules Molecules have additional energy levels because they can vibrate and rotate #### Energy Levels of Molecules - The large numbers of vibrational and rotational energy levels can make the spectra of molecules very complicated - Many of these molecular transitions are in the infrared part of the spectrum #### Three Types of Spectra #### Which letter labels absorption lines? ## Thought Question Which letter(s) labels emission lines? Reflected Sunlight: Continuous spectrum of visible light is like the Sun's except that some of the blue light has been absorbed - object must look red Thermal Radiation: Infrared spectrum peaks at a wavelength corresponding to a temperature of 225 K Carbon Dioxide: Absorption lines are the fingerprint of CO₂ in the atmosphere Ultraviolet Emission Lines: Indicate a hot upper atmosphere Mars!